Hbase的预分区与Hbase的rowKey的设计原则
Hbase的预分区与Hbase的rowKey的设计原则
1、HBase的预分区
1.1、为何要预分区?
- 增加数据读写效率
- 负载均衡,防止数据倾斜
- 方便集群容灾调度region
- 优化Map数量
1.2、如何预分区?
每一个region维护着startRow与endRowKey,如果加入的数据符合某个region维护的rowKey范围,则该数据交给这个region维护。
1.3、如何设定预分区?
1.3.1、手动指定预分区
hbase(main):001:0> create 'staff','info','partition1',SPLITS => ['1000','2000','3000','4000']
完成后如图:
1.3.2、使用16进制算法生成预分区
hbase(main):003:0> create 'staff2','info','partition2',{NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}
完成后如图:
1.3.3、分区规则创建于文件中
创建splits.txt文件内容如下:
cd /export/servers/
vim splits.txt
编辑内容:
aaaa
bbbb
cccc
dddd
然后执行:
hbase(main):004:0> create 'staff3','partition2',SPLITS_FILE => '/export/servers/splits.txt'
成功后如图:
1.3.4、使用JavaAPI创建预分区
Java代码如下:
/**
* 通过javaAPI进行HBase的表的创建以及预分区操作
*/
@Test
public void hbaseSplit() throws IOException {
//获取连接
Configuration configuration = HBaseConfiguration.create();
configuration.set("hbase.zookeeper.quorum", "node01:2181,node02:2181,node03:2181");
Connection connection = ConnectionFactory.createConnection(configuration);
Admin admin = connection.getAdmin();
//自定义算法,产生一系列Hash散列值存储在二维数组中
byte[][] splitKeys = {{1,2,3,4,5},{'a','b','c','d','e'}};
//通过HTableDescriptor来实现我们表的参数设置,包括表名,列族等等
HTableDescriptor hTableDescriptor = new HTableDescriptor(TableName.valueOf("stuff4"));
//添加列族
hTableDescriptor.addFamily(new HColumnDescriptor("f1"));
//添加列族
hTableDescriptor.addFamily(new HColumnDescriptor("f2"));
admin.createTable(hTableDescriptor,splitKeys);
admin.close();
}
2、HBase的rowKey设计技巧
HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定位。
HBase中rowkey可以唯一标识一行记录,在HBase查询的时候,有以下几种方式:
1.通过get方式,指定rowkey获取唯一一条记录
2.通过scan方式,设置startRow和stopRow参数进行范围匹配
3.全表扫描,即直接扫描整张表中所有行记录
2.1 rowkey长度原则
owkey是一个二进制码流,可以是任意字符串,最大长度64kb,实际应用中一般为10-100bytes,以byte[]形式保存,一般设计成定长。建议越短越好,不要超过16个字节,原因如下:
- 数据的持久化文件HFile中是按照KeyValue存储的,如果rowkey过长,比如超过100字节,1000w行数据,光rowkey就要占用100*1000w=10亿个字节,将近1G数据,这样会极大影响HFile的存储效率;
- MemStore将缓存部分数据到内存,如果rowkey字段过长,内存的有效利用率就会降低,系统不能缓存更多的数据,这样会降低检索效率。
2.2 rowkey散列原则
如果rowkey按照时间戳的方式递增,不要将时间放在二进制码的前面,建议将rowkey的高位作为散列字段,由程序随机生成,低位放时间字段,这样将提高数据均衡分布在每个RegionServer,以实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息,所有的数据都会集中在一个RegionServer上,这样在数据检索的时候负载会集中在个别的RegionServer上,造成热点问题,会降低查询效率。
2.3 rowkey唯一原则
必须在设计上保证其唯一性,rowkey是按照字典顺序排序存储的,因此,设计rowkey的时候,要充分利用这个排序的特点,将经常读取的数据存储到一块,将最近可能会被访问的数据放到一块。
2.4 什么是热点
HBase中的行是按照rowkey的字典顺序排序的,这种设计优化了scan操作,可以将相关的行以及会被一起读取的行存取在临近位置,便于scan。然而糟糕的rowkey设计是热点的源头。
热点发生在大量的client直接访问集群的一个或极少数个节点(访问可能是读,写或者其他操作)。大量访问会使热点region所在的单个机器超出自身承受能力,引起性能下降甚至region不可用,这也会影响同一个RegionServer上的其他region,由于主机无法服务其他region的请求。
设计良好的数据访问模式以使集群被充分,均衡的利用。为了避免写热点,设计rowkey使得不同行在同一个region,但是在更多数据情况下,数据应该被写入集群的多个region,而不是一个。下面是一些常见的避免热点的方法以及它们的优缺点:
2.4.1、加盐
这里所说的加盐不是密码学中的加盐,而是在rowkey的前面增加随机数,具体就是给rowkey分配一个随机前缀以使得它和之前的rowkey的开头不同。分配的前缀种类数量应该和你想使用数据分散到不同的region的数量一致。加盐之后的rowkey就会根据随机生成的前缀分散到各个region上,以避免热点。
2.4.2、哈希
哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是可以预测的。使用确定的哈希可以让客户端重构完整的rowkey,可以使用get操作准确获取某一个行数据。
2.4.3、反转
第三种防止热点的方法时反转固定长度或者数字格式的rowkey。这样可以使得rowkey中经常改变的部分(最没有意义的部分)放在前面。这样可以有效的随机rowkey,但是牺牲了rowkey的有序性。
反转rowkey的例子以手机号为rowkey,可以将手机号反转后的字符串作为rowkey,这样的就避免了以手机号那样比较固定开头导致热点问题
例:时间戳反转
一个常见的数据处理问题是快速获取数据的最近版本,使用反转的时间戳作为rowkey的一部分对这个问题十分有用,可以用 Long.Max_Value - timestamp 追加到key的末尾,例如 [key][reverse_timestamp] , [key] 的最新值可以通过scan [key]获得[key]的第一条记录,因为HBase中rowkey是有序的,第一条记录是最后录入的数据。
其他一些建议:
尽量减少行键和列族的大小在HBase中,value永远和它的key一起传输的。当具体的值在系统间传输时,它的rowkey,列名,时间戳也会一起传输。如果你的rowkey和列名很大,这个时候它们将会占用大量的存储空间。
列族尽可能越短越好,最好是一个字符。
冗长的属性名虽然可读性好,但是更短的属性名存储在HBase中会更好。
----------------------------------------------------------------------------------------------------
以上内容到这里就结束了哦。各位读者的 三连就是小编坚持下去的动力哦!以上内容如有错误,欢迎大家及时帮助小编纠正哦!!!最好的关系就是互相成就,我们下期见。
我是小哪吒。一名编程行业的业余选手…哈哈哈
学而不思则罔,思而不学则殆。 |
文章来源于互联网:Hbase的预分区与Hbase的rowKey的设计原则
文章评论